
 

 

 
 

 
 
 

OBSERVATIONAL-BASED EVALUATION OF NWP REANALYSES IN MODELING 
CLOUD PROPERTIES OVER THE SOUTHERN GREAT PLAINS 

 
 
 

Wei Wu1*, Yangang Liu1 and Alan K. Betts2 

 

1Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, NY 11973, USA 
2Atmospheric Research, Pittsford, VT 05763, USA 

*Corresponding author: Wei Wu, Atmospheric Sciences Division, Brookhaven National Laboratory, 75 Rutherford 
Dr., Bldg. 815E, Upton, NY 11973; Email: wwu@bnl.gov 

 
 
 
 

Submitted to 
J. Geophys. Res. 

 
 
 

October 2011 
 
 
 

Atmospheric Sciences Division/Environmental Sciences Dept. 
 

Brookhaven National Laboratory 
 
 
 
 

U.S. Department of Energy 
Office of Science 

 
 
 
 
Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-
98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that 
the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the 
published form of this manuscript, or allow others to do so, for United States Government purposes. 
 
 
This preprint is intended for publication in a journal or proceedings.  Since changes may be made before publication, it may not be 
cited or reproduced without the authorʼs permission. 

judywms
Text Box
BNL-96388-2011-JA



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISCLAIMER 
 

This report was prepared as an account of work sponsored by an agency of the United States 
Government.  Neither the United States Government nor any agency thereof, nor any of their 
employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or any third party’s use or the results of such use of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors.  The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or any agency thereof.  

 
 
 



	  

Abstract 

This study evaluates three major Numerical-Weather-Prediction (NWP) reanalyses 

(ERA-Interim, NCEP/NCAR Reanalysis, and NCEP/DOE Reanalysis) in modeling surface 

relative shortwave cloud forcing, cloud fraction, and cloud albedo. The observations used for this 

evaluation are surface-based continuous measurements of the US Atmospheric Radiation 

Measurement (ARM) program from 03/25/1997 to 12/31/2008 over the Southern Great Plains 

(SGP) site. These cloud properties from the reanalyses are evaluated at multiple temporal scales. 

Like the observations, all the reanalyses show a strong annual cycle, and relatively weak diurnal 

or inter-annual variations of the cloud properties. The reanalyses exhibit significant 

underestimation on the cloud properties, and the model biases of the cloud properties are linearly 

linked to one another. Further analysis reveals that the model biases of the cloud properties 

exhibit quasi-linear relationships to the model biases of near-surface relative humidity (and 

temperature for ERA-Interim). A combined statistical analysis using the technique of Taylor 

diagrams and a newly developed metric “Relative Euclidean Distance” indicates that ERA-

Interim (NCEP/NCAR Reanalysis) has the best (worst) overall performance among the three 

reanalyses.  
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1. Introduction 

Climate prediction depends on modeling, so there is a pressing need to quantify model 

uncertainties and reduce model biases. Among numerous model uncertainties, the representation of 

clouds and associated radiative processes has been recognized as one of the most uncertain factors in 

global climate models (GCMs), which limit the accuracy of climate prediction  [IPCC, 2007]. As a 

consequence, model evaluations to identify deficiencies in the parameterization of clouds and 

associated radiative processes remain a field of intensive research.  

To address this long-standing climate issue, the US Department of Energy’s (DOE’s) Earth 

System Modeling program funded a new model evaluation project in 2009: the FAst-physics System 

TEstbed and Research (FASTER) project. The main thrust of this multi-institutional project is to 

accelerate the evaluation and improvement of the parameterizations of cloud-related fast processes in 

large-scale climate models, by using various long-term observations from the DOE’s Atmospheric 

Radiation Measurement (ARM) program and satellites collected over the ARM sites. This paper is 

an initial evaluation of the representation of clouds and associate radiative processes in three major 

Numerical-Weather-Prediction (NWP) reanalyses. 

As representations of the state of the atmosphere, reanalyses are generated via a state-of-art 

analysis and forecast system assimilating data from a wide variety of observations including ships, 

satellites, ground stations and radar. The long-term, consistent global distributions of reanalyses 

make them particularly valuable in climate research, and they have been widely used as a base-line 

in studying global climate change and climate modeling [e.g., Lu et al., 2005; Anderson et al., 2008; 

Haimberger et al., 2008; Betts et al., 2009; Simmons et al., 2010; Rye et al., 2010]. Nonetheless, 

despite several distinct advantages over more traditional climate datasets, reanalyses have been 

found contaminated by time-varying biases, suggesting a limitation for characterizing long-term 
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climate trends [e.g., Thorne and Vose, 2010; Dee et al., 2011]. Furthermore, cloud data are not 

directly assimilated into reanalyses. Instead, cloud-related properties of reanalyses are computed 

from model parameterizations, and often have biases which must be evaluated, similar to those in 

GCMs. For these reasons, observational-based evaluations of widely used reanalyses are crucial to 

not only this FASTER project, but also the whole community of climate researchers. 

In this study we evaluate three major NWP reanalyses in modeling surface relative shortwave 

cloud forcing (see section 2.3.1), cloud fraction, and cloud albedo. We use decade-long (1997 to 

2008) surface-based continuous ARM value-added products (VAP) over the Southern Great Plains 

(SGP) Central Facility site as a standard for this evaluation.  

We first evaluate the diurnal, annual and inter-annual variations of the cloud properties from 

the reanalyses. Then, we analyze the model biases of the cloud properties and their links to one 

another and to the common meteorological variables (i.e., temperature and relative humidity). 

Finally, the overall performance of the reanalyses in modeling the cloud properties is evaluated. 

Section 2 briefly introduces the data and methods used. Section 3 shows the multiscale variations of 

the cloud properties. Section 4 analyzes model biases and their links. Section 5 evaluates the overall 

performance of the reanalyses. Section 6 summarizes this study.   

2. Data and Methods 

This section briefly introduces the data (e.g., observations and reanalyses) and methods used 

in this study. Note that this study only evaluates daytime cloud properties, since shortwave radiation 

observations are used. 
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2.1 Observations 

The observations used are the high-resolution ARM VAP from well-calibrated surface-based 

continuous measurements of surface shortwave (SW) radiation flux and fractional sky cover (“cloud 

fraction” hereafter) over the SGP Central Facility (262.51oE, 36.61oN), generated by Long and his 

co-workers [Long and Ackerman, 2000; Long et al., 2006]. The VAP are based on the measurements 

collected by the Solar and Infrared Radiation System (SIRS) since 25 March 1997, and contains all 

the data needed for this evaluation. We use the 15-min datastreams of all-sky and clear-sky-fit 

surface downwelling SW fluxes and total cloud fraction from 03/25/1997 to 12/31/2008. Surface 

relative shortwave cloud forcing (SRCF) is calculated using the all-sky and clear-sky SW fluxes, and 

cloud albedo is calculated using both SRCF and cloud fraction. In addition, we also use the 30-min 

datastreams of 2m air temperature and relative humidity from the Surface Meteorological 

Observation System (SMOS) instruments from 04/01/2001 to 12/31/2008 for analyzing the links of 

the model biases of the cloud properties to those of near-surface meteorological conditions.  

2.2 Reanalyses 

The three major NWP reanalyses (i.e., ERA-Interim, NCEP/NCAR Reanalysis I, and 

NCEP/DOE Reanalysis II) are evaluated in this study. The abbreviations “ERA”, “NCEP”, and 

“NCAR” denote “European Centre for Medium-Range Weather Forecasts (ECMWF) global 

atmospheric reanalysis”, “National Center for Environmental Prediction”, and “National Center for 

Atmospheric Research”, respectively. A brief introduction is given below.  
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2.2.1 ERA-Interim 

ERA-Interim is an improved version of ECMWF’s previous reanalysis ERA-40. It provides 

data from 1989 to present. This reanalysis was archived in a horizontal resolution of T255 spherical-

harmonic representation for the basic dynamical fields or N128 reduced Gaussian grid with 

approximately uniform 79 km spacing for surface and other grid-point fields, with 60 vertical levels 

[Berrisford et al., 2009]. The global archive has 6-hourly time resolution, but for selected points, 

including the ARM SGP site, hourly data were archived which we use here. The major 

improvements in ERA-Interim include the representation of hydrological cycle, the quality of 

stratospheric circulation, and the handling of bias and changes in the observing system. One 

advantage of this reanalysis is its high spatial and temporal resolutions, better for studying regional 

diurnal variations. Detailed description about this reanalysis can be found at the ECMWF web site at 

http://www.ecmwf.int//research/era/do/get/ERA-Interim. We use hourly clear-sky surface net SW 

flux, and all-sky surface net and surface downwelling SW fluxes, total cloud cover, 2m air 

temperature and specific humidity, and surface pressure from 03/25/1997 to 12/31/2008. The hourly 

data are the outputs from the first 0-12 hour forecasts from twice-daily analysis. All the data used are 

from a Gaussian grid centered at (262.50 oE, 36.84 oN) over the ARM SGP site.  

Note that, ERA-Interim hourly clear-sky surface downwelling SW flux ( clear
dnSW ) is not 

available so it is calculated from Equation (1) using the available clear-sky surface net SW flux 

( clear
netSW ), all-sky surface downwelling SW flux ( all

dnSW ) and all-sky surface net SW flux ( all
netSW ), 

all
net

all
dn

clear
netclear

dn SW
SWSWSW ×

=                                                                                                              (1) 
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Equation (1) is derived based on Equation (2) in Betts et al. [2009] under the assumption that surface 

albedo is the same for clear-sky and cloudy-sky conditions. Here, several data points with “negative” 

or “spike” clear-sky surface downwelling SW flux are marked as “bad” data points and not included 

in further analysis.  

Note also that, ERA-Interim hourly 2m relative humidity is not available so it is calculated 

using Equation (2) [i.e., Equation (3.62)  in Peixoto and Oort, 1992], 

ss e
pq

q
q

622.0
rh ==                                                                                                                         (2) 

where rh, q ,	   sq ,	   p ,	   se ,	   and	   T 	   represent relative humidity, specific humidity (kg/kg), saturation 

specific humidity (kg/kg), pressure of moist air (hPa), saturation vapor pressure (hPa), and 

temperature (K) of moist air. The saturation vapor pressure se  is calculated using Equation (3) of 

saturation vapor pressure, recommended by World Meteorological Organization 

(http://cires.colorado.edu/~voemel/vp.html), 

⎟
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⎟
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⎠
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⎜
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⎛
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2.2.2 NCEP/NCAR Reanalysis I   

NCEP/NCAR Reanalysis I (R1 hereafter) [Kalnay et al. 1996; Kistler et al. 2001] provides 

data from 1948 to the present with 6-hour temporal resolution. The spatial resolution archived in this 

reanalysis is T62 Gaussian grid (~ 210 km), or 2.5o latitude x 2.5o longitude non-Gaussian grid, with 

28 vertical levels. This reanalysis was generated via an analysis and forecast system to perform data 

assimilation using a wide variety of weather observations including ships, satellites, ground stations 

and radar. In this paper, we use 6-hourly clear-sky and all-sky surface downwelling SW flux, total 

cloud cover, 2m air temperature and near-surface (sigma level 995) relative humidity over the ARM 

SGP site from 03/25/1997 to 12/31/2008. All the data used are from a Gaussian grid centered at 

(262.50 o E, 37.14 o N) except the relative humidity data that are from a non-Gaussian grid centered 

at (262.50 o E, 37.50 o N). These data are downloaded from the NOAA’s Physical Science Division 

web site at http://www.esrl.noaa.gov/psd/data/gridded/reanalysis/.  

2.2.3 NCEP/DOE Reanalysis II 

NCEP/DOE Reanalysis II (R2 hereafter) is a second version of R1. It covers data from 1979 

to present, available at the same web site as R1. This reanalysis is believed to be an improved 

version of R1, with a number of errors fixed, updated parameterizations of physical processes 

(including a new SW radiation scheme which significantly reduced surface insolation by about 8%), 

and the addition of more observations [Kanamitsu et al. 2002]. Similarly, we use R2 6-hourly all-sky 

surface downwelling SW flux, total cloud cover, 2m air temperature and near-surface (1000 hPa) 

relative humidity over the ARM SGP site from 03/25/1997 to 12/31/2008. Since the archive does not 

provide R2 clear-sky surface downwelling SW flux, we estimate it by using R1 clear-sky surface 
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downwelling SW flux and the following expressions for the best fit to the available R2 all-sky 

surface downwelling SW flux, 

⎥⎦

⎤
⎢⎣

⎡ −
+×=

60
)85.092.0(85.0)R1;,()R2 d;,( ddtSWtSW clear

dn
clear
dn         (for 60≤d )                      (4-1) 

92.0)R1;,()R2 d;,( ×= dtSWtSW clear
dn

clear
dn          (for 12060 << d  or 280220 << d )            (4-2) 

⎥⎦

⎤
⎢⎣

⎡ −
×+×=

100
)120(sin02.092.0)R1;,()R2 d;,( ddtSWtSW clear

dn
clear
dn

π    (for )220120 ≤≤ d )    (4-3) 

⎥⎦

⎤
⎢⎣

⎡ −−
−×=

86
)280)(85.092.0(92.0)R1;,()R2 d;,( ddtSWtSW clear

dn
clear
dn    (for 366280 ≤< d )  (4-4) 

where )R1 d;,(tSW clear
dn / )R2 d;,(tSW clear

dn 	   denotes  R1/R2 6-hourly clear-sky surface downwelling 

SW flux, t  denotes 6-hourly time of a day, and d  denotes calendar day of a year. The estimated R2 

6-hourly clear-sky surface downwelling SW flux is shown in Figure 1.  

2.3 Methods 

We will first briefly introduce the calculations of SRCF and cloud albedo. Then, we will give 

a detailed description of the procedures used for this study.  

2.3.1 SRCF 

SRCF (also called “effective cloud albedo”) was first proposed by Betts and Viterbo [2005] 

for quantifying the impact of the cloud field on the surface radiative budget over a southwest basin 

of the Amazon. It is a non-dimensional measure of surface SW cloud forcing ( cldF ), defined as  
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dn
clr

dn
all

dn
clr

cldSRF
cld F

F
F
F

−=−= 1α                                                                                                              (5) 

where dn
allF and dn

clrF  denote all-sky and clear-sky surface downwelling SW fluxes, with positive 

values being indicative of downward fluxes. Based on Equation (5), we can calculate SRCF if all-

sky and clear-sky surface downwelling SW fluxes are available. 

Furthermore, Equation (5) indicates that SRCF represents the fraction of clear-sky incoming 

SW flux falling to the surface which is reflected and absorbed by clouds. Here, SW reflection or 

absorption by other atmospheric particles such as aerosols is ignored or assumed to be the same for 

clear and cloudy sky. This non-dimensional quantity offers an effective measure of surface SW 

cloud forcing and minimizes the influence from non-cloud factors such as aerosol or solar zenith 

angle. Discussions and applications of SRCF can be found in previous papers [e.g., Betts et al., 

2006, Betts, 2009; Betts et al., 2009; Betts and Chiu, 2010; Liu et al., 2011].  

2.3.2 Cloud Albedo 

For studying the quantitative relationship between SRCF, cloud fraction, and cloud albedo, 

Liu et al. [2011] derived an analytical expression 

fr
SRF
cld αα =                                                                                                                                    (6) 

where f  and rα   denote cloud fraction, and cloud albedo. We estimate cloud albedo by applying 

SRCF and cloud-fraction data into Equation (6). 
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2.3.3 Procedures of Evaluation 

Detailed procedures of the evaluation are described below. First, the 15-min all-sky/clear-sky 

surface downwelling SW flux and cloud fraction observations are averaged into hourly data. Here, 

only those with 4 valid 15-min datapoints within one hour are used. The valid 15-min datapoints 

refer to those with 15-min all-sky/clear-sky surface downwelling SW flux greater than zero and 15-

min cloud fraction between 0 and 1. We use the hourly data to calculate the mean value of hourly 

all-sky/clear-sky surface downwelling SW flux (or cloud fraction) at each season (Spring: March to 

May, Summer: June to August, Fall: September to November, Winter: December to February). The 

mean value of hourly SRCF at each season is calculated using the mean value of hourly all-

sky/clear-sky surface downwelling SW flux. The mean value of the overall hourly SRCF (or cloud 

fraction) is the average of the mean values at four seasons. The mean value of overall hourly cloud 

albedo is calculated using the mean value of overall hourly SRCF (or cloud fraction). Further, those 

valid hourly all-sky/clear-sky surface downwelling SW flux and cloud fraction between 6am and 

6pm (local standard time: LST) are averaged into daytime-mean data. Daytime-mean SRCF is 

calculated using daytime-mean all-sky/clear-sky surface downwelling SW flux, and daytime-mean 

cloud albedo is calculated using daytime-mean SRCF and cloud fraction for those with cloud 

fraction greater than 0.05. Those daytime-mean SRCF (>-0.05) and cloud fraction are further 

averaged into monthly data. The monthly cloud albedo is calculated by using monthly SRCF and 

cloud fraction. The mean values of monthly cloud properties at each month and the yearly cloud 

properties are the averages of the monthly cloud properties. 

Next, the cloud properties from hourly ERA-Interim and 6-hourly Reanalysis I/ II are used to 

calculate the mean values of daytime hourly/6-hourly cloud properties. The calculation procedures 
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are the same as for the observations. Here, only those hourly/6-hourly reanalysis data concurrent to 

those valid hourly observations are used. The concurrent 6-hourly reanalysis data refer to those:  

within those concurrent 6 hours the hourly observations have valid data. Further, those concurrent 

hourly/6-hourly reanalyses are averaged into daytime-mean, and then those daytime-mean reanalysis 

data concurrent to those valid daytime-mean observations are averaged into monthly data. The 

yearly data are the averages of monthly data. The diurnal/monthly/yearly cloud properties from the 

reanalyses are then evaluated based on the observations.  

After that, for diagnosing the path of model-error propagation, the model biases (model 

minus observation) of the cloud properties and their links are analyzed. We first average the 

observed 30-min 2m air temperature and relative humidity into hourly data. Then, those concurrent 

valid hourly data of the observed cloud properties, temperature, and relative humidity are further 

averaged into daytime-mean and then monthly data. Then, the three reanalyses’ hourly/6-hourly 

cloud properties, 2m air temperature and near-surface relative humidity (only those concurrent to the 

valid hourly observations) are averaged into daytime-mean and then monthly data. After that, the 

daytime-mean and monthly model biases of the cloud properties, 2m air temperature and near-

surface relative humidity are examined.  

Finally, for evaluating the overall performance of the reanalyses in modeling the cloud 

properties, we employ the widely used technique of the Taylor diagram [Taylor, 2001], and also 

develop a new metric “Relative Euclidean Distance”. 

A Taylor diagram reveals concise and easy-to-visual second-order statistical differences 

between two (or more) different time series. It is especially useful for evaluating a model’s 

performance in phase and amplitude of variations (represented by “correlation” r  and “standard 
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deviation” σ ), and a model’s “centered root-mean-square error” E  (“RMS error” hereafter). This 

technique has been widely used in climate researches and IPCC assessment [e.g., IPCC, 2001; 

Anderson et al., 2004; Martin et al., 2006; Miller et al., 2006; Bosilovich et al., 2008; Gleckler et al., 

2008; Pincus et al., 2008]. Briefly, the expressions for calculating r , σ , and E  are shown below 

[Taylor, 2001], 

( )( )

OM

1

1

σσ

∑
=

−−
=

N

n
nn OOMM

Nr                                                                                                         (7) 

( ) ( )[ ]
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E                                                                                                (8) 
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N
σ                                                                                                                   (10) 

with 

∑
=

=
N

n
nMN

M
1

1                                                                                                                             (11) 

∑
=

=
N

n
nON

O
1

1                                                                                                                               (12) 

where “ nM ” or “ nO ” denote a modeled or observational-based variable, defined at N  discrete 

temporal (or spatial) points; and the subscript “M ” or “O” denote a model or observations. Note 
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that, the “correlation” r , “standard deviation” σ , and “RMS error” E  are calculated without 

removing periodic signals of the variations. 

As a supplement to the Taylor diagram, we develop a new metric “Relative Euclidean 

Distance” (D ), based on Euclidean-Distance technique (e.g., Elmore and Richman, 2001) and first- 

and second -order statistics, 

( ) 2
2

O

OM
2

)1(
)(

D r
O
OM

−+⎥
⎦

⎤
⎢
⎣

⎡ −
+⎥

⎦

⎤
⎢
⎣

⎡ −
=

σ
σσ                                                                             (13) 

As can be seen from the expression (13), the value of D  gives an overall measure of the model 

biases from the mean and phase/amplitude of modeled variations. For a perfect agreement, 0D = . 

The model performance degrades as D  increases.  

3. Evaluation of multiscale cloud properties 

This section evaluates the cloud properties (i.e., SRCF, cloud fraction, and cloud albedo) 

from the reanalyses. The cloud properties evaluated are at diurnal, annual, and inter-annual temporal 

scales.  

Figure 2 shows the multiscale variations of SRCF from the reanalyses and the observations 

(upper panels), and corresponding relative model biases [i.e., (model minus observation) divided by 

observation] (lower panels). Red, blue, green, and purple represent the observations, ERA-Interim, 

R1, and R2, respectively. Left, middle and right panels represent diurnal, annual and inter-annual 

variations, respectively. It is evident that the SRCF from the observations and ERA-Interim has a 

strong annual cycle, with amplitude about 0.15 for the observations and about 0.10 for ERA-Interim. 

The SRCF peaks in March and reaches its lowest value in July. Both R1 and R2 show a relatively 
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weaker annual cycle with amplitude about 0.05. R2 (R1) shows a similar (opposite) phase pattern to 

the observations and ERA-Interim. The diurnal and inter-annual variations of SRCF are weaker than 

the annual cycle, with amplitude ranging from 0.03 to 0.05. For the diurnal cycle, the observations 

and R2 show a similar phase pattern with larger (smaller) value in the morning (afternoon), opposite 

to ERA-Interim and R1. For the inter-annual variations, SRCF reveals a significant drop in 1999 and 

2006, especially for the observations and ERA-Interim. One notable phenomenon is that the 

magnitude of the observed SRCF variations is much larger than that of the reanalyses. In other 

words, the reanalyses significantly underestimate the observed SRCF. This fact can also be seen 

from the lower panels, where the relative biases range from -30% to -50% for the majority.  

Similar to Figure 2, Figure 3 (or 4) shows the comparison of the multiscale variations of 

cloud fraction (or cloud albedo). As shown in Figure 3, the multiscale variations of cloud fraction 

look remarkably similar to those of SRCF, with a strong annual cycle (amplitude up to 0.22) and 

relatively weak diurnal and inter-annual variations (amplitude up to 0.09). The phase patterns of the 

multiscale variations of cloud fraction in general follow those of SRCF, suggesting that larger cloud 

fraction in general corresponds to larger SRCF or vice versa. The underestimation of the modeled 

cloud fraction is also significant, ranging from -20% to 40% for the majority. Figure 4 reveals a 

strong annual cycle (amplitude up to 0.20) and slightly weak diurnal and inter-annual variations 

(amplitude up to 0.15) for the modeled and observed cloud albedo. The phase patterns of the 

multiscale variations of cloud albedo mainly follow those of SRCF or cloud fraction, except for the 

annual cycle of the modeled cloud albedo which has the lowest value in winter time, opposite to 

other annual-cycle patterns. For all the models the underestimation of cloud albedo is small from 

May to September, but increases to -25% to -30% in the cold season. 



	  

	  

14 

4. Model biases and their links 

The previous section shows that, except for warm season cloud albedo, the three reanalyses 

significantly underestimate the three cloud properties. To explore further the propagation path for the 

model errors, this section examines the range of the model biases in the three cloud properties and 

their links to one another. Also examined is the relationship of the cloud-property biases to the 

model biases of near-surface temperature and relative humidity, since the cloud properties are known 

closely related to model-resolved meteorological conditions. The analysis using concurrent daytime-

mean and monthly data showed similar conclusions, so we only show the monthly results to 

illustrate our findings. 

Figure 5 are the contour plots showing the range and relationship of the monthly model 

biases between the cloud properties. Left, middle and right panels represent ERA-Interim, R1 and 

R2, respectively. As can be seen, the model biases of the cloud properties mainly fall within a 

centered region, ranging from -0.20 to 0 for SRCF and cloud fraction and from -0.20 to 0.10 for 

cloud albedo. The intensive points of the model biases exhibit a positive linear relationship to one 

another, except for the model biases of ERA-Interim cloud fraction and SRCF. The positive 

correlations are evident in the corresponding scatter plots (Figure 6) as well, where blue, green, and 

purple represent ERA-Interim, R1, and R2, respectively. 

Figure 7 are the scatter plots showing the relationships of the monthly model biases between 

the cloud properties and near-surface relative humidity and temperature. Blue, green, and purple 

represent ERA-Interim, R1 and R2, respectively. As can be seen, ERA-Interim has a dry warm bias 

while R1/R2 has a moist bias with a wider spread in the temperature bias. The model biases of the 

cloud properties in general exhibit a weak positive linear relationship to the model biases of near-
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surface relative humidity, except for ERA-Interim cloud fraction whose biases does not show a clear 

relationship with its model biases of relative humidity. ERA-Interim model biases of the SRCF and 

cloud albedo exhibit a negative linear relationship to the model biases of near-surface temperature, 

while R1/R2 model biases of the cloud properties do not show a clear relationship with those of 

near-surface temperature. It is likely that the surface biases in temperature and humidity are anti-

correlated in ERA-Interim as in an earlier reanalysis, ERA40 (Betts et al 2006). 

5. Evaluation on the overall performance of the reanalyses 

This section evaluates the overall performance of the reanalyses in modeling the cloud 

properties. The evaluation is conducted using concurrent daytime-mean or monthly data. 

Figure 8 shows the Taylor diagrams of the cloud properties from daytime-mean (left panels) 

and monthly (right panels) data. Red, blue, green, and purple represent the observations, ERA-

Interim, R1, and R2, respectively. The symbols “circle”, “triangle”, and “square” represent SRCF, 

cloud fraction, and cloud albedo. The radial distance represents the amplitude of the variations, 

normalized by the amplitude of the observational-based variations. The cosine of azimuthal angle of 

each point gives the correlation between the reanalyses and the observations. The distance between 

each point and the reference point “Obs” represents the RMS error, normalized by the amplitude of 

the observational-based variations. As this distance approaches to zero, the modeled variations 

approach the observations.  

For daytime-mean data, ERA-Interim exhibits the best performance in modeling the phase of 

the cloud properties and the magnitude of the SRCF variations, although it slightly overestimates the 

magnitude of the cloud-fraction/cloud-albedo variations. R2 exhibits the best performance in 

modeling the magnitude of the cloud-fraction/cloud-albedo variations, although it significantly 
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underestimates the magnitude of the SRCF variations. R2 shows slightly better phase pattern of the 

cloud properties than R1. R1 significantly underestimates the magnitude of the cloud properties and 

also shows the worst phase similarity to the observations. ERA-Interim shows the smallest RMS 

error of SRCF, and R1 shows the smallest RMS error of cloud fraction (or cloud albedo).  

For monthly data, ERA-Interim exhibits the best performance in modeling the phase and 

magnitude and the smallest RMS error of the cloud properties, even though ERA-Interim’s 

underestimation in modeling SRCF is still significant. R2 slightly overestimates the magnitude of the 

cloud-albedo variations and significantly underestimates the SRCF and cloud-fraction variations. R1 

significantly underestimates all the cloud properties, showing the worst in modeling the phase and 

magnitude and the largest RMS error of the cloud properties. 

Figure 9 further compares the “Relative Euclidean Distance” D  values of the reanalyses in 

modeling the daytime-mean (upper) or monthly (lower) cloud properties. Blue, green, and purple 

represent ERA-Interim, R1, and R2 respectively. As can be seen, ERA-Interim (R1) has the smallest 

(largest) D values for all the cloud properties for both daytime-mean and monthly temporal scales, 

suggesting that ERA-Interim (R1) ranks the best (worst) overall performance in modeling the cloud 

properties among the reanalyses.  

6. Summary  

This study evaluates three major reanalyses (ERA-Interim, NCEP/NCAR Reanalysis I, 

NCEP/DOE Reanalysis II) in modeling surface relative shortwave cloud forcing (SRCF), cloud 

fraction, and cloud albedo. The cloud properties at diurnal, annual, and inter-annual temporal scales 

from all the reanalyses are first evaluated. Then, the model biases are quantified and their links are 

examined. The overall performance of the reanalyses in modeling the cloud properties is evaluated 
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using a combined statistical method (i.e., the technique of Taylor diagrams and a newly developed 

metric “Relative Euclidean Distance”). Decade-long (1997 to 2008) surface-based continuous ARM 

VAP over the Southern Great Plains (SGP) Central Facility site are used as a standard for this study. 

Results show that the reanalyses significantly underestimate the cloud properties, with 

relative biases ranging mainly from -30% to -50% for SRCF, from -20% to 40% for cloud fraction, 

and from -10% to -30% for cloud albedo. The annual cycle of the models’ relative biases is 

substantial. For SRCF, ERA-Interim has a uniform negative bias throughout the year, but R1 and R2 

have much reduced biases in summer. The annual cycles of the cloud-fraction relative biases differ 

between the three reanalyses. But for the derived cloud albedo, all the models show a small bias 

from May to September, increasing in the cold season to a large negative bias of -25% to -30%. 

The model biases of the cloud properties predominantly range from -0.20 to 0 for SRCF and 

cloud fraction and from -0.20 to 0.10 to cloud albedo. The model biases from the majority exhibit a 

positive linear relationship to one another, and in general show quasi-linear relationships to the 

model biases of near-surface relative humidity (and temperature for ERA-Interim). These findings 

suggest that the model biases of the three cloud properties are closely linked to one another, and that 

the model biases of near-surface meteorological conditions (especially relative humidity) have a 

direct impact on the model biases of the cloud properties, likely through parameterization schemes.   

A combined statistical method, based on first- and second- order statistics, indicates that 

ERA-Interim (R1) has the best (worst) overall performance in modeling the cloud properties. 

The findings from this study highlight the significant underestimation of the cloud properties 

over the ARM SGP site in the three major NWP reanalyses, and the model biases of the cloud 

properties are closely linked to one another and also linked to the model biases of near-surface 
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meteorological conditions (especially relative humidity). This suggests that caution must be taken 

when using the reanalyses as a standard (e.g., a substitute of observations) for evaluating climate 

models. Furthermore, the underestimation of the cloud properties is a crucial issue in climate 

modeling, since it could substantially influence the estimation of the Earth’s surface and atmospheric 

energy budget, hydrological cycle and general circulation. This issue brings direct attention to a 

future study on the improvement of the model parameterizations for reducing the model biases of the 

cloud properties. An effective way to make such an improvement is through the improvement of the 

model parameterizations relevant to cloud fraction, cloud albedo, and near-surface meteorological 

conditions (especially relative humidity). 

It is noteworthy that the extent of the underestimation shown in this study could be partially 

impacted by the uncertainty of the observations used, especially the single-point observations of 

cloud fraction which represents 160o field-of-view hemispheric fractional sky cover from the surface 

[Long et al., 2006]. A systematic investigation on quantifying the uncertainty of cloud fraction 

observations and on developing new approaches to reduce the observational uncertainty [e.g., Min et 

al., 2008; Hogan et al., 2009] is needed to discern such potential observational effects.  
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Figure 1.  Annual distribution of R2 6-hourly (a. 6am-12pm LST; b. 12pm-6pm LST) surface downwelling 
shortwave flux over the ARM SGP Central Facility site from 03/25/1997 to 12/31/2008. The symbol “x” (red) 
represents R2 clear-sky surface downwelling shortwave flux, estimated by using R1 clear-sky surface 
downwelling shortwave flux. The symbol “o” (blue) represents available R2 all-sky surface downwelling 
shortwave flux. 

 
 
 

 
Figure 2.  Multiscale variations of surface relative shortwave cloud fraction (SRCF) (a, b, c) and 
corresponding relative model biases (d, e, f), defined as [(model minus observation) divided by observation]. 
Red, blue, green, and purple represent the observations, ERA-Interim, R1, and R2, respectively. The data used 
are daytime (6am to 6pm LST) data from 03/25/1997 to 12/31/2008 over ARM SGP Central Facility site. 
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Figure 3.  The same as Figure 2, except that this figure is about cloud fraction instead of surface relative 
shortwave cloud fraction (SRCF). 

 
 
 
 

 
Figure 4.  The same as Figure 2, except that this figure is about cloud albedo instead of surface relative 
shortwave cloud fraction (SRCF). 
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Figure 5.  Contour plots showing the range and relationship of the monthly model biases between the cloud 
properties. Left (a, d), middle (b, e) and right (c, f) panels represent ERA-Interim, R1 and R2, respectively. 

 
 
 
 

 
Figures 6.  Scatter plots showing the relationship of the monthly model biases between the cloud properties. 
Blue, green, and purple represent ERA-Interim, R1, and R2, respectively. 
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Figure 7.  Scatter plots showing the relationships of the monthly model biases between the cloud properties 
and near-surface relative humidity (or temperature). Blue, green, and purple represent ERA-Interim, R1, and 
R2, respectively. “SRCF” denotes surface relative shortwave cloud fraction as in the text. 

 
 
 

 
Figure 8.  Taylor diagrams of the cloud properties from daytime-mean (left) or monthly (right) data. Red, 
blue, green, and purple represent the observations, ERA-Interim, R1, and R2, respectively. The symbols 
“circle”, “triangle”, and “square” represent surface relative shortwave cloud fraction (SRCF), cloud fraction, 
and cloud albedo. 
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Figure 9.  “Relative Euclidean Distance” of the cloud properties from daytime-mean (upper) and monthly 
(lower) data. “SRCF” denotes surface relative shortwave cloud fraction as in the text. The shorter the 
distance, the better a model’s performance is. 

 
 




